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Abstract. We survey recent developments in the theory of quasiconfor-
mal mappings between metric spaces. We examine the various weak
definitions of quasiconformality, and give conditions under which they
are all equal and imply the strong classical properties of quasiconformal
mappings in Euclidean spaces. We also discuss function spaces preserved
by quasiconformal mappings.

1. Introduction

A complete understanding of the behavior of quasiconformal mappings re-
quires fluency in moving between the various definitions of quasiconformality.
Of particular importance is that the Sobolev regularity and absolute conti-
nuity properties of quasiconformal mappings in fact follow from the easy to
verify metric definition. In Euclidean spaces, these properties have been major
theme in the literature from the initiation of the study of non-smooth quasi-
conformal mappings by Ahlfors in 1954 [1] to Gehring’s seminal works in the
early 1960’s [8], [7]. By 1968, the celebrated work of Mostow demonstrated
the need for a theory of quasiconformal mappings in the non-Riemannian
setting [23]. This led to the study of rigidity and quasiconformal mappings in
the Heisenberg group and other Carnot groups. In this setting, the techniques
of Gehring, which are based on the foliation of Euclidean space by lines, be-
come tenuous and delicate to employ, though with difficulty they still led to
important results [24], [21].

An alternate approach to understanding the equivalence of the many
different definitions of quasiconformal mappings was given by Heinonen and
Koskela [13]. By considering quasiconformal mappings in the setting of ar-
bitrary metric spaces, they were able to identify robust techniques that did
not depend on the special structure of Euclidean spaces. The starting point
is the simplest definition of a quasiconformal mapping, the metric definition.
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For a homeomorphism f : X → Y of metric spaces, we define for all
x ∈ X and r > 0

Lf (x, r) := sup{dY (f(x), f(y)) : dX(x, y) ≤ r},

lf (x, r) := inf{dY (f(x), f(y)) : dX(x, y) ≥ r},

Hf (x) := lim sup
r→0

Lf (x, r)

lf (x, r)
and hf (x) := lim inf

r→0

Lf (x, r)

lf (x, r)
.

The mapping f is H-quasiconformal, H ≥ 1, if Hf (x) ≤ H for all x ∈ X.

If the underlying space X lacks a useful infinitesimal structure, then
we cannot expect any large-scale properties of quasiconformal mappings de-
fined on X. On the other hand, if the underlying space X has enough struc-
ture, the infinitesimal definition given above in fact guarantees strong prop-
erties of quasiconformal mappings. Properties of particular importance are
Sobolev regularity, absolute continuity on paths, and quasisymmetry, i.e.,
global rather than infinitesimal distortion bounds. In this survey, we examine
the minimal assumptions on metric spaces X and Y and a homeomorphism
f : X → Y that guarantee that f is quasiconformal and possesses these strong
properties. We also discuss recent work regarding function spaces preserved
by such mappings.

2. The metric space setting

A metric measure space is a triple (X, d, µ) where (X, d) is a metric space
and µ is a measure on X. For our purposes, a measure is a non-negative
countably subadditive set function defined on all subsets of X that gives the
value 0 to the empty set. Moreover, we require that measures are Borel inner
and outer regular.

A metric space is said to be proper if every closed and bounded set is
compact. Unless otherwise mentioned, throughout this paper we let (X, d, µ)
and (Y, dY , ν) be proper metric measure spaces.

Given a point x ∈ X and a radius r > 0, we employ the following
notation for balls:

B(X,d)(x, r) = {y ∈ X : d(x, y) < r} and B̄(X,d)(x, r) = {y ∈ X : d(x, y) ≤ r}.

Where it will not cause confusion, we will replace B(X,d)(x, r) by BX(x, r),
Bd(x, r), or B(x, r). A similar convention will be made for any other objects
which depend on the ambient metric space. Given a ball B = B(x, r) and a
constant τ > 0, we denote by τB the ball B(x, τr).

A main theme in analysis on metric spaces is that the infinitesimal
structure of a metric space can be understood via the paths that it contains.
The reason for this is that rectifiable paths admit path-integration. We define
a path in X to be a continuous, non-constant map γ : I → X where I ⊆ R
is a compact interval. A path γ : I → X is called rectifiable if it is of finite
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length. Any rectifiable path γ : [a, b] → X has a unique parameterization
γs : [0, length(γ)]→ X such that for all t ∈ [a, b],

γ(t) = γs(length(γ|[a,t])).

The path γs is called the arc length parameterization of γ, and it is 1-
Lipschitz. Given a Borel function ρ : X → [0,∞] and a rectifiable path γ
in X, we define the integral of ρ over γ by∫

γ

ρ ds :=

∫
[0,length(γ)]

ρ ◦ γs(t) dt.

A measurement of the size of a given collection of paths Γ in X is the
p-modulus of Γ, p ≥ 1, which is defined by

modp(Γ) = inf

∫
X

ρp dµ,

where the infimum is taken over all Borel functions ρ : X → [0,∞] such that
for all locally rectifiable paths γ ∈ Γ,∫

γ

ρ ds ≥ 1.

Such a function ρ is said to be admissible for the path family Γ. A condition
is said to be true on p-almost every path in X if the collection of paths in X
where the condition does not hold has p-modulus 0.

An upper gradient of f is a generalization of the norm of the gradient of
f developed in connection with quasiconformal mappings in [13]. Philosoph-
ically, the more rectifiable curves a metric space contains, the more stringent
the upper gradient condition becomes. Given an open set U ⊆ X and a map-
ping f : U → Y , we say that a Borel function ρ : U → [0,∞] is an upper
gradient of f in U if, for each rectifiable path γ : [0, 1]→ U , we have

dY (f(γ(0)), f(γ(1))) ≤
∫
γ

ρ ds. (2.1)

If (2.1) holds only for p-almost every path in U , then we say that ρ is a
p-weak upper gradient of f in U .

Real-valued Sobolev spaces based on upper gradients were used to great
success [6] and explored in-depth in [27]. They have been extended to the
metric-valued setting in [14] and have seen numerous generalizations. A sim-
ple definition is as follows. Let f : X → Y be a continuous map. Then f is
in the Sobolev space W 1,p

loc (X;Y ), 1 ≤ p ≤ ∞, if for each relatively compact
open subset U ⊆ X, the map f has an upper gradient g ∈ Lp(U) in U , and
there is a point x0 ∈ U such that u(x) := dY (f(x0), f(x)) ∈ Lp(U). If the
space Y is not specified, it assumed to be R.

A continuous mapping f : X → Y is said to be absolutely continuous on
a rectifiable path γ in X if the map f ◦ γs : [0, length(γ)] → Y is absolutely
continuous in the usual sense. As in the Euclidean setting, Sobolev maps of
metric spaces (which are defined to be continuous) have absolute continuity
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properties. Namely, if X is proper, then each f ∈ W 1,p
loc (X;Y ) is absolutely

continuous on p-almost every rectifiable path in X [27, Prop. 3.1].
In the Euclidean setting, the dimension of the space obviously plays

a key role in the Sobolev theory. Moreover, the dimension of the space is
reflected in the uniform scaling of Lebesgue measure. The following condition
is a relatively strong generalization of this phenomenon to the metric measure
space setting. The metric measure space (X, d, µ) is called Ahlfors Q-regular,
Q ≥ 0, if there exists a constant K ≥ 1 such that for all a ∈ X and 0 < r ≤
diamX, we have

rQ

K
≤ µ(B̄d(a, r)) ≤ KrQ. (2.2)

We say that (X, d, µ) is locally Ahlfors Q-regular if for every compact
subset V ⊆ X, there is a constant K ≥ 1 and a radius r0 > 0 such that for
each point a ∈ V and radius 0 < r ≤ r0, the inequalities in (2.2) are satisfied.

We also require the following non-standard definition. Let E ⊆ X. We
say that (X, d, µ) is locally Ahlfors Q-regular off E if there is a constant
K ≥ 1 such that for each point a ∈ X\E, there is a radius ra > 0 such that
for each 0 < r ≤ ra, the inequalities in (2.2) are satisfied.

There is also a weaker notion of dimensionality for measures that is
useful. The metric measure space (X, d, µ) is doubling if there is a constant
C ≥ 1 such that for every x ∈ X and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Iterating this condition leads to the notion of Assouad dimension; for more
information, see for example [12].

The space (X, d, µ) is said to support a p-Poincaré inequality, 1 ≤ p <∞
if there are constants C, τ ≥ 1 such that if B is a ball in X, u : τB → R is a
bounded continuous function, and ρ is an upper gradient of u, then

−
∫
B

|u− uB | dµ ≤ C diam(B)

(
−
∫
τB

ρp dµ

)1/p

.

Here and throughout the paper we employ the notation

uB = −
∫
B

u dµ =
1

µ(B)

∫
B

u dµ,

whenever u is a µ-measurable function on B.
Note that if (X, d, µ) supports a p-Poincaré inequality, 1 ≤ p < ∞,

then it also supports a q-Poincaré inequality for all q ≥ p. A deep theorem
of Keith and Zhong states that if (X, d, µ) is doubling and supports a p-
Poincaré inequality, p > 1, then it also supports a p′-Poincaré inequality for
some p′ < p [16].

The p-Poincaré inequality can be thought of as a requirement that a
space contains “many” curves, in terms of the p-modulus of curves in the
space. See [13], [12], and [15] for more information. For a small bit of intuition,
assume that (X, d, µ) is Ahlfors Q-regular, Q > 1, and supports a p-Poincaré
inequality. Regardless of the value of p, it follows that (X, d) is quasiconvex.
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However, if p > Q, then X may contain local cut-points. For more geometric
implications of the Poincaré inequality, see [11] and [17].

3. Weak definitions of quasiconformality

In this section, we discuss weak versions of the metric, analytic, and geometric
definitions of quasiconformality. Some relations between these conditions are
valid even in the absence of a Poincaré inequality. Their value resides in the
fact that in the presence of an appropriate Poincaré inequality, they are all
equivalent to the usual strong forms of quasiconformality. However, they are
potentially much easier to verify in practice.

We begin with a weak formulation of the metric definition. The following
definition allows for an exceptional set and employs hf rather than Hf .

Definition 3.1. Let 1 ≤ p ≤ Q. We say that f satisfies the weak (Q, p)-metric
definition of quasiconformality if one of the following two conditions holds:

• p < Q, and there exists a set E ⊆ X of σ-finite (Q − p)-dimensional
Hausdorff measure, and a number 0 ≤ H <∞ such that hf (x) <∞ for
all x ∈ X\E and hf (x) ≤ H for µ-almost every point x ∈ X,
• p = Q, and there exists a countable set E ⊆ X and a number 0 ≤ H <
∞ such that hf (x) ≤ H for all x ∈ X\E

The classical definition of a quasiconformal homeomorphism f : Ω→ Ω′

of domains in Rn consists of the requirements that f ∈ W 1,n
loc (Ω;Rn) and

that there is a constant K ≥ 1 such that ||Df ||n ≤ KJf almost everywhere,
where Df is the weak differential matrix of f and Jf is the determinant
of Df . Given a homeomorphism f : (X, d, µ) → (Y, dY , ν), the role of Jf is
played by the volume derivative µf : X → [0,∞] defined by

µf (x) = lim sup
r→0

ν(f(B(x, r)))

µ(B(x, r))
.

Definition 3.2. We say that f satisfies the Q-analytic definition of quasicon-

formality if f ∈W 1,Q
loc (X;Y ) and there is a constant H ≥ 1 such that Hµ

1/Q
f

is a Q-weak upper gradient of f .

Finally, we consider the geometric (or modulus) definition of quasicon-
formality, first introduced by Ahlfors in Euclidean space [1]. Many properties
of quasiconformal mappings may be derived directly from this definition.

Definition 3.3. We say that f satisfies the weak Q-geometric definition of
quasiconformality if there is a constant H ≥ 1 such that for every path
family Γ in X

modQ(Γ) ≤ H modQ(f(Γ)).

If f and f−1 satisfy the weak Q-geometric definition of quasiconformality,
then we say that f satisfies the Q-geometric definition of quasiconformality.
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The key point in connecting these definitions is absolute continuity on
paths. The following result from [2] establishes absolute continuity on p-
almost every path for mappings satisfying the weak (Q, p)-metric definition
of quasiconformality.

Theorem 3.4 (Balogh-Koskela-Rogovin). Let Q > 1 and let 1 ≤ p ≤ Q.
Suppose f satisfies the weak (Q, p)-metric definition of quasiconformality,
and assume that X is locally Ahlfors Q-regular and that Y is locally Ahlfors
Q-regular off f(E). Then f ∈W 1,p

loc (X;Y ).

The relationship between the weak metric and analytic definitions of
quasiconformality is now provided by the following results.

Theorem 3.5 (Balogh-Koskela-Rogovin). Assume the hypotheses of Theorem
3.4. Then

gf (x) :=

{
H(µf (x))1/Q hf (x) ≤ H,
∞ hf (x) > H,

is a p-weak upper gradient of f .

Corollary 3.6. Assume the hypotheses of Theorem 3.4 with p = Q. Then f
satisfies the Q-analytic definition of quasiconformality.

TheQ-analytic definition and the weakQ-geometric definition are closely
linked. Note that in the following result from [31], no form of Ahlfors Q-
regularity is assumed.

Theorem 3.7 (Williams). Assume that (X, dX , µ) and (Y, dY , ν) are separable
metric measure spaces of locally finite measure, and that (X, d, µ) is doubling.
Then f satisfies the Q-analytic definition of quasiconformality if and only if
it satisfies the weak Q-geometric definition.

Many properties of quasiconformal mappings between Ahlfors Q-regular
metric spaces follow directly from the (strong) Q-geometric definition. Thus
it is of practical interest to understand the properties of the inverse of a
mapping that satisfies a weak definition of quasiconformality.

Theorem 3.8. Assume that (X, dX , µ) and (Y, dY , ν) are locally Ahlfors Q-
regular, Q > 1. If f : X → Y satisfies the weak (Q,Q)-metric definition

of quasiconformality, then f−1 ∈ W 1,Q
loc (X;Y ). Moreover, f−1 satisfies the

Q-analytic definition of quasiconformality, and f satisfies the Q-geometric
definition of quasiconformality.

Proof. The proof is nearly identical to the proof of Theorem 3.4 given in
[2, Theorem 4.1]; the main philosophical difference is that one replaces balls
with ball-like objects, namely, the images of balls under f . One constructs
the same cover as in that proof, but replace the control function ρε defined
there by the the quantity

ρε(y) =
∑
i

ri
Lf (xi, ri)

χB(f(xi),2Lf (xi,ri))(y).
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The remainder of the proof procedes as in the original to show that f−1 ∈
W 1,Q

loc (X;Y ). A similar trick applied to the proof of Theorem 3.5 given in [2,
Proposition 4.3] shows that f−1 satisfies theQ-analytic definition of quasicon-
formality. The final statement now follows from Corollary 3.6 and Theorem
3.7. �

4. Quasiconformality and quasisymmetry

In the Euclidean setting, the natural Sobolev regularity of a quasiconformal
mapping corresponds to the dimension of the space. It turns out that the
assumption of a suitable Poincaré inequality allows for similar results in the
metric space setting, as the following modified version of Theorem 3.4 shows.

Theorem 4.1. Let Q > 1 and 1 ≤ p ≤ Q. Suppose f satisfies the weak (Q, p)-
metric definition of quasiconformality, and assume that X is locally Ahlfors
Q-regular and satisfies a p-Poincaré inequality, and that Y is locally Ahlfors

Q-regular off f(E). Then f ∈W 1,Q
loc (X;Y ).

It has been shown that Theorem 3.4 is also sharp in the sense that in
the absence of a Poincaré inequality, the absolute continuity and Sobolev
regularity cannot be improved to the Euclidean analogue [18].

Theorem 4.2. For each integer m ≥ 1 and real number ε > 0, there is a
homeomorphism f : X → Y of metric measure spaces and a set E ⊆ X such
that

(i) X is compact, quasiconvex, and Ahlfors 2-regular,
(ii) Y is compact and locally Ahlfors 2-regular off f(E),
(iii) (log3 2)/m ≤ dimH(E) ≤ (2 log3 2)/m, and 0 < HdimH(E)(E) <∞,
(iv) Hf (x) = 1 for all x ∈ X\E,

(v) f /∈W 1,q
loc (X;Y ) for some q < 2− dimH(E) + ε.

The abundance of curves provided by a Poincaré inequality also allows
for much stronger global distortion estimates in the form of quasisymmetry,
at least in the presence of necessary geometric conditions.

A homeomorphism f : (X, dX)→ (Y, dY ) of metric spaces is called qua-
sisymmetric if there exists a homeomorphism η : [0,∞) → [0,∞) such that
for all triples a, b, c ∈ X of distinct points, we have

dY (f(a), f(b))

dY (f(a), f(c))
≤ η

(
dX(a, b)

dX(a, c)

)
.

It is easy to see that such a homeomorphism satisfies Lf (x, r) ≤ η(1)lf (x, r)
for all x ∈ X and r ≥ 0. If f is a quasisymmetric homeomorphism, then f−1

is as well; indeed, most proofs that the inverse of a quasiconformal mapping
is quasiconformal involve first showing that the map is quasisymmetric.

As opposed to quasiconformal mappings, quasisymmetric mappings pre-
serve boundedness and prevent the formation of cusps in a space. The latter
property can be formalized as follows.
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Let λ > 1. A metric space (X, d) is λ-linearly locally connected (λ-LLC)
if for all a ∈ X and r > 0 the following conditions are satisfied:

(λ-LLC1) For each pair of distinct points x, y ∈ B(a, r), there is a continuum
E ⊆ B(a, λr) such that x, y ∈ E,

(λ-LLC2) For each pair of distinct points x, y ∈ X\B(a, r), there is a continuum
E ⊆ X\B(a, r/λ) such that x, y ∈ E.

Recall that a continuum is a connected, compact set containing more
than one point. If f : X → Y is an η-quasisymmetric homeomorphism, and
X is λ-LLC, then Y is λ′-LLC where λ′ depends only on η and λ. If a met-
ric measure space (X, d, µ) is Ahlfors Q-regular and supports a Q-Poincaré
inequality, then it is λ-LLC for some λ ≥ 1 depending only on the data
associated to the conditions on the space [13].

The following theorem may now be derived from [2, Theorem 5.1 and
Remark 5.3] and the techniques of the proof of Theorem 3.8.

Theorem 4.3 (Balogh-Koskela-Rogovin). Suppose that X and Y are Ahlfors
Q-regular metric spaces that are simultaneously bounded or unbounded, and
that one of X and Y is linearly locally connected and the other satisfies a
Q-Poincaré inequality. If f : X → Y satisfies the weak (Q,Q)-metric defi-

nition of quasiconformality, then f ∈ W 1,Q
loc (X;Y ) and f is quasisymmetric.

Moreover, f satisfies the Q-analytic and Q-geometric definitions of quasicon-
formality, and is absolutely continuous in measure.

It is not true that quasisymmetric mappings must be absolutely contin-
uous in measure, in the absence of a Poincaré inequality.

Example 4.4. For any Q ≥ 1, there is an Ahlfors Q-regular and LLC metric
measure space (X, dX , µ) and a quasisymmetric mapping f : X → X such
that f maps a set of measure zero to a set of full measure and a set of full
measure to a set of zero measure.

Proof. It was shown by Tukia [29] that there exists an η-quasisymmetric
mapping g : R → R mapping a set of measure zero to a set of full measure

and vice-versa. Let X = R, dX = | · |1/Q, and µ = HQdX . Then (X, dX , µ)

is Q-regular, and for any E ⊆ R, the quantity µ(E) is equal to the one-
dimensional Lebesgue measure of E. Moreover, g is also a quasisymmetric
when considered as a mapping from (X, dX) to itself, with distortion function
η̃(t) = (η(tQ))1/Q. �

The most general setting in which even very strong definitions of quasi-
conformality imply quasisymmetry is not clear. The question is particularly
intriguing in infinite dimensions, even for very simple function spaces.

Theorem 4.5 (Naor). The space Lp quasisymmetrically embeds in the space
L2 if and only if p ≤ 2.

Question 4.6 (Naor). Does Lp quasiconformally embed in L2 when p > 2?
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The proof of Theorem 4.5 relies on deep work of Mendel and Naor
that gives a metric characterization of Rademacher cotype in Banach spaces
[22]. In particular, it is shown that cotype is preserved by quasisymmetric
mappings between K-convex Banach spaces [25]. The study of cotype in the
general non-linear setting is still nascent [30].

While quasiconformal mappings on Rn are defined to be in W 1,n
loc (Rn),

each such mapping actually lies in a smaller Sobolev class W 1,p
loc (Rn), where

p > n depends n and the distortion of the individual mapping [5], [9]. The key
fact behind this improved regularity is the following reverse Hölder inequality,
which has a self-improving property. For t ∈ [1,∞], we say that a real-valued
function u : X → R is in the class Bt(X) if there is a quantity C ≥ 1 such
that for every x ∈ X and r > 0,(

−
∫
B(x,r)

µtf dµ

)1/t

≤ C−
∫
B(x,r)

µf dµ

when t <∞, or an analogous condition when t =∞. For each quasiconformal
mapping f : Rn → Rn, the Jacobian determinant Jf “naturally” lies in the
class B1(Rn), but in fact lies in a smaller class Bt(Rn) for some t > 1 that
depends on n and the distortion of the individual mapping. The following
result shows that this phenomenon persists in the presence of an appropriate
Poincaré inequality (Theorem 4.3, [13], [16]).

Theorem 4.7. Assume the hypotheses of Theorem 4.3. Then there is t > 1
such that µf ∈ Bt(X).

5. Function spaces preserved by quasisymmetric mappings

A fundamental problem in the theory of quasiconformal mappings between
metric spaces is determining when a metric space that is topologically equiva-
lent to a “model” space (such as Sn) is actually quasisymmetrically equivalent
to that model space. This problem is of particular importance in geometric
group theory [3]. One approach to this problem is to find a function space
associated to each metric space that is preserved under quasisymetric map-
pings.

The uniformization problem described above is of interest even when the
given space is not known to possess any rectifiable curves. An approach to
gradients on metric spaces that does not rely on path integration was explored
in [11] and [10]. Given a mapping f : (X, dX , µ) → (Y, dY ), a measurable
function g : X → [0,∞] is a Haj lasz gradient of f if for almost every x, y ∈ X,

dY (f(x), f(y)) ≤ dX(x, y)(g(x) + g(y)).

This definition is both local and global in nature. One should view a Haj lasz
gradient, in the Euclidean setting or in the presence of a suitable Poincaré
inequality, as the maximal function of the usual gradient.
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More precise variants of the concept of a Haj lasz gradient have led to
interesting function spaces that are invariant under quasisymmetric mappings
[20].

Definition 5.1. Let s ∈ (0, ∞) and u be a measurable function on X. A
sequence of nonnegative measurable functions, ~g ≡ {gk}k∈Z, is called a frac-
tional s-Haj lasz gradient of u if there exists E ⊂ X with µ(E) = 0 such that
for all k ∈ Z and x, y ∈ X \ E satisfying 2−k−1 ≤ d(x, y) < 2−k,

|u(x)− u(y)| ≤ [d(x, y)]s[gk(x) + gk(y)]. (5.1)

Denote by Ds(u) the collection of all fractional s-Haj lasz gradients of u.

Relying on this concept we now introduce counterparts of Triebel-Lizorkin
spaces. Let p ∈ (0, ∞). In what follows, for q ∈ (0, ∞], we always write
‖{gj}j∈Z‖`q ≡ {

∑
j∈Z |gj |q}1/q when q <∞ and ‖{gj}j∈Z‖`∞ ≡ supj∈Z |gj |,

‖{gj}j∈Z‖Lp(X, `q) ≡ ‖‖{gj}j∈Z‖`q‖Lp(X).

Definition 5.2. Let s, p ∈ (0,∞) and q ∈ (0, ∞]. The homogeneous Haj lasz-

Triebel-Lizorkin space Ṁs
p, q(X) is the space of all measurable functions u

such that
‖u‖Ṁs

p, q(X) ≡ inf
~g∈Ds(u)

‖~g‖Lp(X, `q) <∞.

Theorem 5.3 (Bourdon-Pajot). Let X1 and X2 be Ahlfors Q1-regular and Q2-
regular spaces with Q1, Q2 ∈ (0, ∞), respectively. Let f be a quasisymmetric
mapping from X1 onto X2. For si ∈ (0, Qi) with i = 1, 2, if Q1/s1 = Q2/s2,

then f induces an equivalence between Ṁs1
Q1/s1, Q1/s1

(X1) and Ṁs2
Q2/s2, Q2/s2

(X2).

In [4], Bourdon and Pajot proved the above invariance for the Besov

spaces ḂsiQi/si
, consisting of all measurable u with

‖u‖Ḃsi
Qi/si

(Xi)
≡
(∫

Xi

∫
Xi

|u(x)− u(y)|Qi/si

[d(x, y)]2Q
dµ(y) dµ(x)

)si/Qi

<∞.

The fact that these spaces coincide with the above spaces Ṁs
p, q(X) for the

indicated indices was established in [20] together with more general invariance
properties described below.

It is not claimed in Theorem 5.3 that f acts as a composition operator,
but merely that every u ∈ Ḃs2Q2/s2

(X2) has a representative ũ so that ũ ◦ f ∈
Ḃs1Q1/s1

(X1) with a norm bound, and similarly for f−1. Indeed, u◦f need not

even be measurable in this generality.
If both f and f−1 are absolutely continuous in measure and µf ∈ Bs(X)

for some s ∈ (1, ∞], then the third index in Theorem 5.3 may be replaced
by an arbitrary q > 0. In particular, these conditions are met under the
assumptions of Theorem 4.3.

Theorem 5.4. Let X1 and X2 be Ahlfors Q1-regular and Q2-regular spaces
with Q1, Q2 ∈ (0, ∞), respectively. Let f be a quasisymmetric mapping from
X1 onto X2, and assume that f and f−1 are absolutely continuous and µf ∈
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Bt(X1) for some t ∈ (1, ∞]. Let si ∈ (0, Qi) with i = 1, 2 satisfy Q1/s1 =

Q2/s2, and q ∈ (0, ∞]. Then f induces an equivalence between Ṁs1
Q1/s1, q

(X1)

and Ṁs2
Q2/s2, q

(X2).

In Theorem 5.4, f and f−1 act as composition operators. Moreover, with
the assumptions of Theorem 5.4, by Lebesgue-Radon-Nykodym Theorem and
[28], we have that µf−1(y) = [µf (f−1(y))]−1 for almost all y ∈ X2, and hence
µf−1 ∈ Bt′(X2) for some t′ ∈ (1, ∞]

It is immediate from the definition that u ∈ Ṁs
Q/s,∞(X) if and only

if there is a set E ⊂ X with µ(E) = 0 and g ∈ LQ/s(X) such that for all
x, y ∈ X \ E,

|u(x)− u(y)| ≤ [d(x, y)]s[g(x) + g(y)]. (5.2)

That is, u belongs to the space Ṁs
Q/s(X) introduced by Haj lasz in [10]. Thus

these spaces are invariant in the setting of Theorem 5.4. If we further assume
that X satisfies a Q-Poincaré inequality, then Ṁ1

Q(X) = Ẇ 1,Q(X) (see [16]),
and thus Theorem 5.4 includes the invariance of this space under the Poincaré
inequality assumption, generalizing [19]. In fact, the invariance of this space
holds already under the assumptions of Theorem 3.8.

We further point out that the class of functions of bounded mean os-
cillation is invariant under quasisymmetric mappings of Rn, n ≥ 2 [26]. This
space is also invariant under the assumptions of Theorem 5.4.
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